
Agile Regression Testing Using Record & Playback

Gerard Meszaros 1, Ralph Bohnet 2, Jennitta Andrea3

ClearStream Consulting
Suite 3710, 205 Fifth Ave SW

Calgary, AB
T2P 2V7 Canada

1 gerard@clrstream.com
2 ralph@clrstream.com

3 jennitta@clrstream.com

Abstract. There are times when it is not practical to hand-script automated tests
for an existing system before one starts to modify it. In these circumstances, the
use of “record & playback” testing may be a viable alternative to hand-writing
all the tests. This paper describes experiences using this approach and
summarizes key learnings applicable to other projects.

1 Introduction

Scripting tests by hand as required by JUnit or it’s siblings is hard work and requires
special skills to write tests. Writing functional (or acceptance) tests using JUnit is
particularly hard because of all the data requirements. One possible alternative is the
FIT frameworks [1] but these still require someone to develop utility code to act as
“glue” between the testing framework and the system under test (SUT). Each of these
approaches requires that the system provide an interface by which the tests can be
conducted.

1.1 Catch-22 of XUnit-Based Testing

On several recent agile projects, we found ourselves needing to modify an existing
system that had no automated tests. In one case, the manual retest effort was expected
to involve several person-years of effort and many months of elapsed time. Hand-
scripting JUnit (or equivalent) tests was considered too difficult because the systems
were not designed for testability. (e.g. business logic embedded in the UI; no access to
an application API; no means of controlling all the test setup (such as “stubbing”)).
Refactoring the system for testability so that tests could be written was considered too
risky without having automated regression testing to verify that the refactoring had
not introduced problems. And even if we had done it, we were concerned that we
could not hand-script all the necessary tests, complete with their expected outcomes,
in the time and resource budget available to us.

1.2 Looking for Alternatives to XUnit

This led us to investigate all possible alternatives to XUnit style testing. Most of this
effort focused on “record & playback” (R&PB) styles of test creation, an approach
that involved recording functional tests on the system before we made the changes
and regression testing the refactored system by playing back these tests. The tests
verified the overall functionality of the system and, in particular, much of the business
logic it contained. Once the tests were recorded and verified (successfully played back
on the original system), we could then start refactoring the system to improve its
design. We felt that this would allow us to quickly record a number of tests that we
could play back at will. Since we had an existing version of the system to use as a
“gold standard”, we could leave the effort of defining the expected outcomes to the
record and playback framework.

This paper describes the options we considered, their advantages and
disadvantages and how we ended up regression testing the system. The work also lead
to an understanding of where R&PB can be used in a more general context than the
specific projects with which we were dealing.

2 Issues with R&PB Test Automation

R&PB style testing predates XUnit-style testing by many decades. Test automation
folklore is rich with horror stories of failed attempts to automate testing. This paper
describes critical success factors for making this style of testing work, what to avoid,
and best practices in R&PB test automation.

The “robot user” approach to test automation had received enough bad publicity in
past attempts at test automation that we found it to be a hard “sell”. We had to
convince our sponsors that “this time it would be different” because we understood
the limitations of the approach and that we had a way to avoid the pitfalls.

2.1 The “Fragile Test” Problem

Test automation using commercial R&PB or “robot user” tools has a bad reputation
amongst early users of these tools. Tests automated using this approach often fail for
seemingly trivial reasons. It is important to understand the limitations of this approach
to testing to avoid falling victim to the common pitfalls. These include Behavior
Sensitivity, Interface Sensitivity, Data Sensitivity and Context Sensitivity.

Behavior Sensitivity
If the behavior of the system is changed (e.g. the requirements are changed and the
system is modified to meet the new requirements), any tests that exercise the modified
functionality will most likely fail when replayed. This is a basic reality of testing
regardless of the test automation approach used.

Interface Sensitivity
Commercial R&PB (“robot user”) test tools typically interact with the system via the
user interface. Even minor changes to the interface can cause tests to fail even though
a human user would say the test should still pass. This is partly what gave test
automation tools a bad name in the past decade.

Data Sensitivity
All tests assume some starting point; these are often called the “pre-conditions” or
“before picture” of the test. Most commonly, this is defined in terms of data that is
already in the system. If the data changes, the tests may fail unless great effort has
been expended to make the tests insensitive to the data being used. More recent
versions of the test automation tools provide mechanisms that can be used to make
tests less sensitive. This has added a lot of complexity to these tools and, as a result,
they often fail to live up to their promises. This has likely contributed to the bad
reputation they have received.

Context Sensitivity
The behavior of the system may be affected by the state of things outside the system.
This could include the states of devices (e.g. printers, servers) other applications, or
even the system clock. E.g. the time and/or date of test.

2.2 Agile Project Issues

There are other issues with R&PB testing that are specific to an agile project
environment (especially eXtreme Programming.)

Not Test-First
Many agilists (especially advocates of eXtreme Programming) would argue that
R&PB test automation completely undermines the notion of automating acceptance
tests before the functionality is built because it requires the SUT to exist before the
tests can be recorded.

3 Understanding Test Automation Choices

As part of our analysis of the choices available to us, we came up with a way of
classifying the approaches to test automation. This helped us better understand why
certain approaches worked better in some circumstances than others.

3.1 Approaches to Test Automation

Classifying Approaches to Test Automation
There is more than one way to automate tests. The approaches can be classified using
a 3 dimensional grid. The three dimensions are:
− Granularity of SUT. The SUT can be a single unit (module, class or even method),

a component, or the entire system.
− Test Creation Approach. The two main options are “Record & Playback” (R&PB)

and hand-scripted tests. 1
− Test Interface. The two main options are testing via the user interface or testing via

an internal software interface or API.

3.2 Common Combinations

While there are 2x2x3 possible combinations, it is possible to understand the primary
differences between the approaches by looking at the front face of the cube. Some of
the 2x2 combinations are applicable to all levels of granularity while others are
primarily used for system testing.

Hand-Scripted Quadrants
The upper right quadrant of the front face of the cube is “modern XUnit”. It involves
hand-scripting tests that exercise the system at all 3 levels of granularity (system,

1 There is a third approach: the generation of tests from semi-formal requirements specification.

However, the authors do not feel qualified to comment on the relative merits of this
approach.

R&PB Script

system
component

unit

UI

API
Means of
Test -
SUT

Interaction

Way of Capturing Tests

SUT

Gra
nu

lar
ity

R&PB Script

system
component

unit

UI

API
Means of
Test -
SUT

Interaction

Way of Capturing Tests

SUT

Gra
nu

lar
ity

Fig. 1. The three dimensions of test automation

component or unit) via internal interfaces. A good example of this is unit tests
automated using JUnit.

A variation on “modern XUnit” is “Scripted UI Tests” with the most common
examples being the use of HttpUnit, JfcUnit or similar tools to hand-script tests using
the user interface. (It is also possible to hand-script tests using commercial “Robot
User” tools.) These would fit into the bottom right quadrant. Where the entire system
is being tested, this would be at the system test level of granularity. They could also
be used to test just the user interface component of the system (or possibly even some
UI units such as custom widgets) but this would require stubbing out the actual
system behind the UI.

Record & Playback Quadrants
The bottom left quadrant is “Robot User” This involves recording tests that interact
with the system via the User Interface and is the approach employed by most
commercial test automation tools. It applies primarily to System testing. This
approach is primarily focused on testing the entire system, but like “scripted UI
Tests”, could be applied to the UI components or units if the rest of the system can be
stubbed out.

The top left quadrant is not well populated with commercial tools but is a feasible
option when building R&PB into the application itself. It involves creating a record &
playback API somewhere behind the user interface. This is then used to record
everything that affects the system state into a file that can later be used for input.

4 Implementing R&PB Test Automation

Record and Playback test automation can be implemented using either commercial
tools or by building a record and playback capability into the application.

Built-in
R&PB

Modern
XUnit

Robot
User

Means of
Test-SUT
Interaction

API

UI

Record & Playback Hand-built Scripts
Way of Capturing Tests

- Very fragile
- Not Maintainable
- Cannot be pre-built
+ No special skills
+ API not required
- Only Complex, flakey,

expensive tools

+ Robust
+ More maintainable
+ Can be pre-built
- More skills req’d
- API required
+ Simple, cheap tools

+ Somewhat Robust
- Not Maintainable
- Cannot be pre-built
+ Fewer skills req’d
- API required
- No COTS tools

- Somewhat fragile
- High maintenance
- Can be pre-built
- More skills req’d
+ API not required
- Complex, flakey,

expensive tools

Scripted
UI Tests

Built-in
R&PB

Modern
XUnit

Robot
User

Means of
Test-SUT
Interaction

API

UI

Record & Playback Hand-built Scripts
Way of Capturing Tests

- Very fragile
- Not Maintainable
- Cannot be pre-built
+ No special skills
+ API not required
- Only Complex, flakey,

expensive tools

+ Robust
+ More maintainable
+ Can be pre-built
- More skills req’d
- API required
+ Simple, cheap tools

+ Somewhat Robust
- Not Maintainable
- Cannot be pre-built
+ Fewer skills req’d
- API required
- No COTS tools

- Somewhat fragile
- High maintenance
- Can be pre-built
- More skills req’d
+ API not required
- Complex, flakey,

expensive tools

Scripted
UI Tests

Fig. 2. The four test automation quadrants

4.1 Using Commercial R&PB Tools

Commercial R&PB testing tools can be used in several ways. Most commonly, they
are used to test an entire system including the business logic and the presentation
logic.

Testing User Interface Behavior

Testing of user interfaces is one area in which commercial “robot user” tools can be
used to good effect. The key is to make the system deterministic enough from a
business logic perspective so that the UI tests can focus on verifying UI behavior
without having to deal with variations in behavior caused by differences in the context
(data, time/date, etc.)

This can be done in two ways:
1. Define a set of test data that can be frozen for the life of the tests. You may

need to stub out any interfaces to other systems (or components such as the
system clock) to ensure complete determinism.

2. Configure the user interface component to use a dummy version of the
business logic component of the application . This “mock application” can
be programmed (hard-coded or data driven) to return canned answers to
requests. This ensures complete determinism of the “business logic” and
allows the tests to focus on changes in UI behavior in response to the canned
responses that are returned.

Testing Business Logic
This is probably the weakest usage of R&PB test automation even though many
improvements have been made in the way commercial R&PB tools record tests.
Either the “hand-scripted via API” or FIT approach would likely be a better long-term
option.

If you do choose to use “robot users” to test the business logic, make sure you
freeze the test data to eliminate a very common source of false test failures. Also,
ensure that the application user interface is stable and that the functionality is not
going to change between when you record the tests and when you plan to re-run them.

4.2 Building R&PB into an Application

Commercial “robot user” tools are not the only way to do R&PB style test
automation. Depending on the architecture of the system under test, there are several
ways to build R&PB right into the application. This is the way we chose to automate
the functional tests on several recent projects.

The main advantage of this approach is that it can be applied to any system
regardless of the technology of the user interface. It is also more robust than most
commercial robot user tools because one source of potential failures – loss of
synchronization between the test tool process and the SUT process – is eliminated by
virtue of R&PB being built into the application. In effect, it moves the test automation

approach from the lower left quadrant (“robot user”) to the upper left quadrant
(“R&PB via API”).

R&PB Decorator Between UI and Service Facade
Where the system consists of a cleanly separated UI component and a business logic
component accessed via a service façade, the system can be configured to place a
Recording Decorator between the two components. It records each request passed into
the service component and the response that came back. A leading candidate file
format for recording the interactions is XML.

Playback is accomplished by building a test driver that calls the service facade with
the recorded requests and compares the actual responses with the previously recorded
responses. It is quite simple to build a test driver that reads the XML containing the
sets of <request> and <expectedresponse> elements. The user interface
component is often omitted during test playback but in some cases it may be present
so that test progress can be monitored.

A component container (such as an EJB application server) is well positioned to
provide the capability to record the requests being passed to the managed component.
Too bad that most do not yet provide this capability.

Building R&PB into the UI of the application
If the application is not cleanly separated into a User Interface component and a
service façade component, it may be possible to build the R&PB capability right into
the User Interface. (See Figure 4) This is most cost-effective when it can done by
building R&PB into a generic driver so that one doesn’t need to sprinkle R&PB hooks
throughout the system.

Example 1: A servlet-based application
We used a Transform View architecture in which a servlet calls business methods on
a service façade and then invokes an XLST transform on the returned XML. We

User
Interface

Business
Logic

In
Production:

Test
Recording:

Test
Execution:

User
Interface

Business
Logic

Recording
Decorator

Business
Logic

Playback
Driver

User
Interface

Business
Logic

In
Production:

Test
Recording:

Test
Execution:

User
Interface

Business
Logic

Recording
Decorator

Business
Logic

Playback
Driver

Fig. 3. Record and Playback using a Recording Decorator

placed recording hooks into the servlet to record the user’s request (URL plus
parameters), resulting XML and the resulting HTML after XLST transformation. A
test menu was added to the UI to allow recording to be turned on and off.

Test execution (playback) was done by building a very simple JUnit test that
submitted the recorded URLs using HttpUnit and compared the returned HTML with
the recorded HTML. To avoid the messiness of manually locating differences
between the two HTML strings, we wrote a custom assertion (a special version of
AssertEquals) that would diagnose the problem and report the location where the two
strings differed.

We were also able to easily build unit tests for our XSL transforms by passing the
recorded XML and the XSL to the transforming and comparing the resulting HTML
with the previously recorded HTML.

Example 2: A project re-engineering a “safety-involved” system
The system contains complex business rules that were not fully understood by the
business. We needed to verify that the re-engineered system implemented the rules
correctly. Unfortunately, the user interface was tightly coupled to the rules logic so it
was not possible to use scripted tests via an API. We placed R&PB hooks into the
generic screen I/O utilities whenever possible but we also needed to place hooks in a
number of other places in the UI code. By recording on the old system and playing
back on the new, we were able to quickly identify any differences in system behavior.

4.2 Test-First Development with R&PB

While at first glance, the title of this section may appear to be an oxymoron, it is
possible to build playback tests before the system is built. As long as the form of the
recorded interaction is human readable, it can also be human writable. (This is one of
the key advantages of using XML for recording the interactions.)

Many of the commercial “robot user” tools do record the interactions in a human
readable form. Some generate completely proprietary test scripting languages while
others record tests in “standard” scripting languages such as VbScript or JavaScript.
You can record a few tests using the tool of choice to see how certain types of
interactions are done. Then you can start scripting tests based on what you have
learned. One key advantage of doing this is that you can make sure the tests are less
sensitive by using the “right” approach (e.g. using the title of a dialog box rather than
the ID.)

The FIT approach to testing is an example of how a test might be “pre-recorded”.
The FIT framework could be modified to generate scripts that are runnable in your
robot user tool, thus moving the effort of understanding how to interact with the
system into test code generation framework.

When recording tests as XML, consider creating XSL style sheets that can
transform the XML into HTML FIT tables. This would make the tests easier to read
(no XML) and allow users to run the tests easily from a website.

4.3 Critical Success Factors

So, assuming you have decided to give robot user testing tools a second chance, what
features do you need to look for in the testing tool? And what techniques do you need
to apply to system development and test automation to be successful?

Designing the system for context independence.
You must be able to configure the system with a known starting point consisting of
both data and the system date.

Tool Provides Means to Initialize System
Tests must be able start up the system with the known starting point.

Functionality Stability
R&PB testing can only be used to good effect when a significant portion of the
applications functionality is expected to be unaffected by the next release. Any tests
that encounter modified functionality must be rerecorded as the functionality is
verified manually.

User Interface Insensitivity
It must be possible to record tests in a way that changes to the UI that do not affect the
business logic do not cause tests to fail. (There may be other tests recorded that verify
that the UI behavior has not changed and these will need to be sensitive to this kind of
change.)

Separation of Tests for UI and Business Logic
All tests that verify business logic should be recorded in a UI insensitive way. A
separate set of tests (either manual or automated) should be used to verify the UI has
not changed. It can be useful to have different sets of tests with different sensitivity as
these can be used to do “defect triangulation” (narrowing down where the defect is
located.)

Limited Lifetime
Recognize that robot user tests will have a limited lifetime. They will not survive
certain kinds of changes to the user interface or the business logic inside the system.
Have a strategy for managing the tests that allows you to identify the those tests that
will be impacted and which would need to be either discarded, rerecorded or
superceded by newly scripted tests. One good way of doing this is to cross-reference
the tests with the requirements by using a test management tool such as Test Director.

5 Applicability

Record and Playback testing should be considered when:

− You need to refactor a legacy system to make it amenable to XUnit-style hand-
scripted tests and you feel it is to risky to do so without having regression tests.

− You cannot afford the time or cost of hand-scripting tests
− You do not have the programming skills required to hand-script the tests.
Record and Playback testing should be avoided when:
− You cannot fix the behavior of the system by freezing/snapshot the data on which

the system will operate.
− The behavior of the system is expected to change significantly between when the

tests can be recorded and when they will be played back.
− If you want to use the automated tests as a specification and there is no existing

system that can be used for recording the tests.

6 Conclusion

Sometimes, R&PB testing is your only viable option given various project constraints.
E.g. When dealing with legacy systems that do not have automated tests, Record &
Playback style testing is a cost effective way to create regression tests that can be used
to verify that design changes to the system do not introduce defects.

R&PB testing tools and techniques have matured significantly over the years and
can now avoid many of the potential pitfalls when used properly.

When commercial R&PB test automation tools are unavailable, too costly, or too
undependable, it is feasible to build the R&PB capability right into the system under
test.

7 Acknowledgements

We would like to thank the many clients who gave us the opportunities to gain the
experiences described in this paper.

References

1. Cunningham, Ward. FIT: Functional Integrated Test. http://fit.c2.com.
2. Fowler, Martin. Patterns of Enterprise Application Architectures.
3. Gamma, Eric et al Design Patterns, Elements of Reusable Architecture
4. JUnit testing framework: http://JUnit.org
5. HttpUnit and JfcUnit user interface testing frameworks: http://JUnit.org
6. Mercury Interactive’s WinRunner functional testing tool and TestDirector test manager:

http://www-svca.mercuryinteractive.com/products
7. Compuware’s QaRun functional testing tool:

http://www.compuware.com/products/qacenter/qarun/
8. Rational Software’s Rational Robot functional testing tool:

http://www.rational.com/products/robot

